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Keywords:

Communicated by: I Cirac, B Kane & R Blatt

1 Introduction

Trapped ions show much promise for achieving large-scale quantum information processing

(QIP). One proposed architecture uses electronic or nuclear states of ions trapped in an RF

Paul trap to store information, and laser-ion interactions to accomplish initialization, logic

gates, and readout. Two-qubit gates are mediated by the shared motional mode of two ions
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in a single trap, and ions are shuttled between zones in an array of ion traps to perform

two-qubit gates between arbitrary pairs of ions [1, 2, 3]. Experiments have demonstrated

movement of ions in multiplexed ion trap arrays [4, 5] and implemented simple algorithms

[6, 7, 8, 9]. The current challenge for this architecture of trapped ion QIP is integration and

scaling to large numbers of ions.

This work demonstrates a scalable, multiplexed ion trap designed for large-scale quantum

information processing [10]. The aluminum trap electrodes are fabricated on a silicon sub-

strate using standard VLSI (very-large-scale integration) techniques. All of the processing

is done below 400◦ C, so future versions of the trap can be built directly on top of CMOS

(complementary metal-oxide-semiconductor) control electronics. The trap is tested both at

room temperature and at 6 K for improved ion lifetime and heating rate. The ion lifetime and

the heating rate of the ion motional state are measured to determine if the trap is suitable

for QIP.

This paper proceeds as follows. Sec. 2 describes the trap design and fabrication process.

Secs. 3, 4, and 5 describe trap operation and testing with 111Cd+, 25Mg+, and 88Sr+ ions

at the University of Michigan, the National Institute of Standards and Technology, and the

Massachusetts Institute of Technology, respectively. Finally, Sec. 6 summarizes and concludes.

2 Trap design, fabrication, and packaging

The ion trap is a surface-electrode RF Paul trap [11, 12, 13] fabricated on a silicon substrate

[10, 14, 15, 16]. The basic idea is to use materials and processes that are as close to the

standard silicon VLSI processing techniques as possible so that scaling to large ion numbers

can be easily achieved. This restricts one to using materials that are allowed in a silicon

processing clean room. For example, gold and silver are not allowed in the initial fabrication

although they can be added in a separate processing step. The initial traps are fabricated

using aluminum metal, a common VLSI material with low resistivity. A thermal oxide forms

at the Al surface which is known to charge upon UV irradiation [17]. If this were to degrade

the trap performance, a W or Ti/W layer of the order of 60 µm thick could be deposited

on top of the Al electrodes in order to improve the metal surface for ion trapping (tungsten

has been used successfully for previous micron scale ion traps [18]); however, this was not

attempted in the early experiments described here.

A cross section of the trap is shown in Fig. 1 and the layout of the ion trap chip is shown

in Fig. 2. The substrate is a highly doped conductive silicon wafer with a resistivity of 0.018

Ω cm. Even though the silicon has a much higher resistivity than the metal, its thickness is

700 µm and the resulting resistance is similar to that of the 1 µm thick metal layers. However,

the doped Si is very lossy at the RF frequencies used for trapping so it can not be exposed

to the RF trapping fields.

The first layer of aluminum serves as a ground plane to isolate the trap electrodes from

the lossy Si substrate. This insures that the Q of the RF circuit is sufficiently high for efficient

RF drive. The ground plane is 1 µm thick Al with a resistance of 0.027 Ω/ a. The second

metal layer comprising the DC control electrodes is insulated from the ground plane by a 0.4

µm layer of silicon nitride with a dielectric constant of 7.5. In some of the traps the ground

plane is omitted. In this case the nitride layer is deposited directly on the Si substrate and

aThe unit Ω/ is ohms per square, which is the resistance of a square area of the metal film.
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Fig. 1. Cross section of the surface-electrode ion trap. DC voltages are applied to the three

electrodes in the middle layer of aluminum and RF is applied to the two raised rails in the top
layer of aluminum. Ions are trapped at the RF quadrupole null located 39 to 79 µm above the
surface of the DC electrodes, indicated by a black cross. Not to scale.

Fig. 2. Layout of the surface-electrode ion trap. The DC electrodes are outlined and labeled in

blue and the RF electrodes are drawn in solid red. The black rectangle is an optional through
wafer slot used for loading. The DC electrodes are between 50 µm and 300 µm wide along the
trap axis. The RF electrodes are 20 µm wide and are separated by 150 µm, 125 µm, 100 µm, and
75 µm center-to-center in the four regions going from left to right.
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the DC control electrode metallic layer isolates the RF electrodes from the Si substrate. The

DC control electrode structures are over-coated by a 10 µm thick dielectric layer of PETEOS

(plasma-enhanced tetraethylorthosilicate), which is a stress balanced SiO2 with a dielectric

constant of 4. The silicon dioxide is made as thick as possible to reduce the capacitance and

increase the breakdown voltage between the DC and RF electrodes [10, 19]. The capacitance

must be minimized since the dissipated RF power, which can easily limit the voltage that

can be applied to the trap, varies as the square of the capacitance. It has been found that

this SiO2 layer must be deposited with carefully controlled temperature, e.g. deposition of a

micron or two and then a pause for thermal equilibration. It is possible that this deposition

process could result in micro-voids that slowly outgas and cause ion de-trapping via collisions.

The third metal layer comprising the RF electrodes is also 1 µm of Al. There is an effective

capacitance divider formed by the relatively high capacitance of the control electrodes to

ground (via the thin nitride insulating layer with a high dielectric constant) and the much

smaller (roughly one fiftieth) capacitance between the DC control electrodes and the RF rails.

This capacitive divider effectively grounds the RF potentials that can be picked up by the

close proximity of the RF and DC control electrodes. Additional capacitors are connected to

the DC control electrodes on filter circuits outside the vacuum chamber to further RF ground

the control electrodes.

A slot for loading or vertical laser access was added to some of the fabricated traps. The

loading slot is an advantage for avoiding contamination of the electrode surfaces from the

neutral-atom oven used to load the trap. This oven is placed behind the trap chip and atoms

emerging through the slot are photoionized. This through slot was fabricated by etching from

the back side of the wafer. First the wafer was sent out for grinding down to a thickness

of 400 µm. It was then chemically mechanically polished (CMP) using standard techniques.

Next a mask was used to etch through the wafer from the back side. This dry etching process

resulted in very straight slot walls with less than a 5% slant toward the surface. The walls

of the slot are quite rough compared to the other surfaces in the trap (1–5 µm peak-to-peak

roughness).

Pictures of the fabricated trap structures are shown in Fig. 3. Ions are confined to the RF

quadrupole null located 39 to 79 µm (depending on the separation of the RF rails) above the

surface of the chip by an RF voltage between 100 and 370 V amplitude at roughly 40 MHz

applied to the two RF rails. The RF electrodes are able to withstand up to 400 V amplitude

before electrical arcing destroys the trap. Confinement along the trap axis is accomplished

by DC voltages between -15 and 15 V applied to the 19 pairs of DC control electrodes on the

outside of the RF rails and to the center electrode in between the RF rails (as shown in Fig. 2).

Note that the metal electrodes’ surfaces are very smooth (∼ 100 nm peak-to-peak roughness)

and that the electrode edges are very well defined (300–500 nm peak-to-peak roughness). In

fact, the very sharp electrode edges could present a problem if field emission occurs at high

RF voltages.

The silicon trap chips were mounted in 100-pin ceramic pin grid array (CPGA) carriers

(Global Chip Materials PGA10047002). Contacts to the electrodes are made to 300 × 300

µm2 Al pads by wire bonding at the edge of the chip. A spacer was required between the

trap chip and the carrier in order to elevate the chip above the upper surface of the carrier

for laser access across the top of the trap chip. This spacer was made from 1.27 mm thick
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Fig. 3. Pictures of the fabricated trap structures. (a) Optical picture of the trap layout. This

particular trap does not have a through wafer loading slot. (b) SEM (scanning electron microscope)
picture of the through wafer loading slot located in the center electrode in the trap region with
the largest RF rail separation. (c) SEM picture of the side of the 10 µm SiO2 layer used to raise

the RF electrodes above the DC electrodes. The SiO2 is striated because it is deposited in several
layers for stress relief.
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Fig. 4. Packaged ion trap. The ion trap is packaged and wire bonded in a 100-pin ceramic pin
grid array. This trap chip is mounted with ceramic paste that can be seen around the edges of the
chip. The ion trap chip is 1.0 cm by 1.0 cm.

96% alumina. A 2 mm × 10 mm slot was laser machined into the alumina spacer for access

to the ion loading slot.

Attaching the chip to the spacer, and the spacer to the carrier was accomplished by epoxy

(EPO TEK 353), ceramic paste, or soldering. Epoxy is the simplest method, however there

are concerns about critical baking procedures and contributions to the base vapor pressure

in the UHV (ultra-high vacuum) chamber. Epoxy also has the disadvantage that it can not

be cleaned just prior to mounting the carrier and chip in the vacuum chamber since residue

from the partially soluble epoxy could coat the trap electrode surfaces.

Ceramic paste is another method for mounting the chip and spacer. The ceramic is not a

good “glue” and a slight overlap of the ceramic paste around the edge of the chip or spacer is

required. The ceramic paste sometimes does not adhere well to the chip or spacer resulting

in the chip detaching during wire bonding. Another problem with the ceramic paste is that,

as was the case with epoxy, the ion trap can not be cleaned after mounting in the CPGA

because the ceramic paste is partially soluble.

The best method found for mounting the chip and spacer is by solder contact. This

requires that the chip and spacer surfaces be coated with gold. Thin strips of 80/20 Au/Sn

are placed between the two gold coated surfaces to be bonded. The assembly is heated to

approximately 285 C in order to melt the Au/Sn alloy. The hot Sn diffuses into the gold

bonding surfaces leaving a much higher melting temperature alloy in the bonding region.

In this manner a second bond can be made between the trap chip and the spacer without

unbonding the carrier/spacer bond. The solder bonds did not cause any fracturing of the

trap structures even though the coefficients of thermal expansion are different by a factor of

two for the ceramic and the silicon chip. This solder bond is strong and clean. It can be

re-cleaned after testing the chip just prior to installing into the vacuum chamber. A packaged

ion trap is shown in Fig. 4.

Ion traps for QIP must be able to store ions reliably for the duration of the computation

and have an ion motional heating rate much smaller than the speed of the two qubit gates.

The next three sections describe measurements of the ion lifetime and motional heating rate
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Electrode Voltage
RF 370 V at 32 MHz plus 2.34 V DC
C 2.34 V
2T 3.12 V
2B 6.12 V
3T 1.90 V
3B 1.22 V
4T 3.12 V
4B 6.12 V

Table 1. Typical voltages used for trap testing at the University of Michigan. The electrodes not
listed are grounded. These voltages trap the ion between electrodes 3B and 3T.

at the University of Michigan, the National Institute of Standards and Technology, and the

Massachusetts Institute of Technology. The University of Oxford and the University of Inns-

bruck also received traps for testing, but were not able to trap ions due to shorting between

the electrodes [20, 21].

3 Trap testing at the University of Michigan

The time-averaged pseudopotential of the ion trap is an anisotropic three-dimensional har-

monic oscillator potential. QIP experiments require that the ion is cooled to near the ground

motional state in all three dimensions. One disadvantage of the surface-electrode geometry is

that the cooling lasers are constricted to a plane parallel to the chip. Because laser cooling

cools only the modes of the ion motion whose principal axes have a component along the

laser wavevector(s), the DC voltages must be chosen such that none of the principal axes

of the pseudopotential are orthogonal to the chip surface and therefore the cooling laser(s).

Such voltages were found by numerically modeling the potentials above the trap electrodes

using a boundary element electrostatics solver [22]. The voltages used for trap testing with
111Cd+ at the University of Michigan are given in Table 1. With this set of voltages, the

principal axis coordinate system is rotated 12 degrees about the z-axis with respect to the

coordinate system shown in Fig. 2. The calculated secular frequencies and trap depth are

(ω′

x, ω′

y, ωz)/(2π) = (5.7, 5.9, 0.5) MHz and 0.5 eV.

The University of Michigan group received three electrically verified ion traps. Of these,

ions were trapped in only the first trap, which did not have an aluminum ground plane. This

resulted in a lower Q (∼ 100) than the traps with the aluminum ground plane due to RF

losses in the silicon substrate. Ions were loaded by photoionization using a pulsed 229 nm

laser (one laser, two photon transition), and Doppler cooled on the 2S1/2 |F = 1,mF = −1〉

↔ 2P3/2 |F = 2,mF = −2〉 transition at 280 nm (up to 5 mW in a 20 µm radius beam,

red detuned by 30–100 MHz from the 111Cd+ transition) with a repumper addressing the
2S1/2 |F = 0,mF = 0〉 ↔ 2P3/2 |F = 1,mF = −1〉 transition. The Doppler cooling lasers were

oriented at 45 deg to the trap axis. In this first trap ions were trapped in the region with the

150 µm RF electrode spacing and the height of the ion 79 µm above the surface. Ions were

trapped using the DC voltages given in Table 1 and between 250 and 370 V RF. At 370 V

RF the mean ion lifetime was about 90 s, with a maximum ion lifetime of about 5 minutes.

The low lifetime is attributed to background gas collisions; the pressure of the chamber was
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measured to be 2.0 × 10−8 Pa at a distance far from the ion trap, but outgassing of the

chip/epoxy/socket would have increased the local pressure at the trap above this measured

chamber base pressure. With the photoionization laser on, the ion position drifted in from

the region closer to where the RF wires attach to the rails. This is attributed to a background

electric field associated with the pulsed ionization laser, since once that was turned off the ion

stayed in its expected region (defined by the applied control voltages). By simply blocking

the cooling beam it was determined that the ion would last at most 5 s without cooling before

it left the trap. Over the course of a few weeks of trapping, this first trap developed electrical

shorts between several of the DC electrodes and the silicon substrate.

The next trap had a backside loading slot, though this is not necessary to trap cadmium

(which has a relatively high room temperature vapor pressure, eliminating the need for line of

site access from the oven to the trapping region). In fact, it was determined that the loading

slot can be detrimental since the central DC electrode which was used to compensate for the

vertical electric field due to the other DC electrodes was now absent. The aluminum ground

plane resulted in a higher Q (∼ 150) which resulted in less power dissipation due to the RF

drive. No ions, however, were trapped in this trap.

The third trap did not have a backside loading slot and did have an aluminum ground

plane. Again, no ions were trapped in this trap. In situ measurements of the electrical

properties looked good (Q ∼ 150, RF and DC electrode capacitances normal).

4 Trap testing at NIST

Trap testing at NIST was performed with 25Mg+. Neutral magnesium was photoionized in

the trap through a two-photon process using 1–10 mW of CW 285 nm laser power focused

to a waist of about 30 µm. The ions were excited on the closed 2S1/2 |F = 3,mF = −3〉 ↔
2P3/2 |F = 4,mF = −4〉 transition at 280 nm with a circularly polarized laser beam that was

aligned with a 1 mT quantizing magnetic field and detuned -20 MHz from the transition center

frequency for optimal Doppler cooling. Due to imperfect cycling and the hyperfine structure

of 25Mg+, a second resonant laser beam was used to repump out of the F=2 ground-state

manifold. For the heating rate measurements described below, intensities near saturation were

used [23]. Single ions were loaded with the cooling beam momentarily detuned by about -300

MHz in the center of the loading slot (between electrodes 2T and 2B) at a calculated well depth

of about 0.050 eV and calculated trap frequencies of approximately (5.0, 5.4) MHz radial and

1 MHz axial. The principal axes had an angle of about (79, 47) degrees (radial directions) and

45 degrees (axial direction) to the wavevector of the cooling beam. Micromotion compensation

had to be frequently performed in the load zone with large variations of the compensation

voltages for different ion loads. This was attributed primarily to charging produced by laser

beam scatter on the electrode structures. For this reason cooling laser intensities were kept

as small as possible for loading (∼ 20 µW in a 30 µm waist). After loading, the ions were

transported to the trap zone between electrodes 5T and 5B, where they resided at a distance

of about 60 µm from the nearest trap electrode. The calculated trap frequencies in this

location were (7.3, 7.7) MHz (radial directions) and 1.6 MHz (axial direction) with a trap

depth calculated to be approximately 0.064 eV.

Three different versions of the basic trap design where tested at NIST. The first chip was
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attached with EPO TEK 353b epoxy to the chip carrier. Despite a careful bake-out and leak

testing it was only possible to reach a base pressure of 6.7× 10−8 Pa in the vacuum enclosure

with this chip. Ion loading was not successful, possibly because ion lifetimes in the trap were

limited to very short durations due to the relatively high background pressure (fluorescence

was registered with an electron-multiplication CCD camera).

The second trap was mounted in the chip carrier using ceramic paste. After baking,

a base pressure of 2.7 × 10−8 Pa was achieved. Subsequent to bakeout, some electrodes

exhibited fluctuating resistances to ground in the range between 100 Ω and 100 kΩ. The

resistance depended on the polarity of the applied potential, indicating diode-like behavior.

Fortunately, none of the electrodes adjacent to the loading zone exhibited this resistance and

backside loading of single ions into the load zone of the chip was successful. The trap lifetimes

were between 30 s and 2 min. Possibly due to large and variable stray fields it was also hard

to reproduce the loading position from load to load. In the process of improving loading

conditions one of the control electrodes in the load zone developed a short to ground after

a potential of approximately 10 V was applied to it continuously for one week. Therefore

further trapping had to be abandoned with this chip. Subsequent breakdown tests with other

DC electrodes on the same chip revealed a diode-like behavior of the current vs. voltage with a

fast breakdown (order a few seconds) with approximately 30 V applied. This same mechanism

may have been responsible for the shorting of the load zone electrode.

With the third chip tested, a base pressure of 6.7 × 10−9 Pa was achieved after bake out.

No electrode corruption was detected over the several weeks of runnning during which ions

were routinely loaded. Ion lifetimes were approximately 5 minutes in the presence of the cool-

ing laser and 5–10 s without cooling light. For other surface-electrode traps at the same base

pressure the ion lifetime is observed to be 20 minutes to several hours [13]. Single ions were

transported from the load zone to the trap zone between electrodes 5T and 5B for perform-

ing heating rate measurements. These measurements were based on a simplified technique

utilizing Doppler-recooling as described in [23]. The heating rate was 7±3 quanta/ms at a

distance of about 60 µm from the nearest electrode and a trap frequency of 1.6 MHz.

5 Trap testing at MIT

Trap testing at MIT was performed with 88Sr+. The ions are loaded into the trap by pho-

toionization of a thermal atomic beam as it passes through the trap region. Photoionization

proceeds via a resonant two-step process with 460 nm and 405 nm lasers (600 µW of each in

a 50 µm radius beam) [24, 25]. A level diagram of 88Sr+ is shown in Fig. 5. Dopper cooling

is performed on the 422 nm S1/2 ↔ P1/2 transition (up to 25 µW in a 15 µm radius beam,

red detuned by 10–50 MHz from the 88Sr+ transition) with an additional 1092 nm laser to

repump the D3/2 state (10 µW in a 30 µm radius beam, blue detuned by about 10 MHz from

the 88Sr+ transition). Resolved sideband cooling and temperature measurement is performed

on the 674 nm S1/2 ↔ D5/2 transition (800 µW in a 30 µm radius beam). A 1033 nm laser

is used to repump the D5/2 state between experiments (10 µW in a 30 µm radius beam, on

resonance with the 88Sr+ transition). In the room temperature test setup, the 460 and 405

nm lasers are parallel to the trap axis and the rest of the lasers are at 45 deg to the trap axis.

bCommercial products are mentioned for the sake of technical completeness; this does not imply endorsement
by NIST.
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Fig. 5. Level diagram of 88Sr+. Dopper cooling is performed on the 422 nm S1/2 ↔ P1/2

transition with an additional 1092 nm laser to repump the D3/2 state. Resolved sideband cooling
and temperature measurement are performed on the 674 nm S1/2 ↔ D5/2 transition. A 1033 nm
laser is used to repump the D5/2 state between experiments.

Electrode Voltage
RF 155 V at 40.6 MHz
C 0.95 V
2T 6 V
3B 1.3 V
4T 6 V

Table 2. Typical voltages used for trap testing at MIT. The electrodes not listed are grounded.

These voltages trap the ion between electrodes 3B and 3T.

In the cryogenic test setup, the optical access is more restricted so all of the lasers are parallel

to the trap axis with an additional 422 nm laser at 90 deg to the trap axis.

A typical set of voltages for the MIT experiments with 88Sr+ are given in Table 2. With

this set of voltages, the principal axis coordinate system is rotated 14 degrees about the z-axis

with respect to the coordinate system shown in Fig. 2. The calculated secular frequencies

and trap depth are (ω′

x, ω′

y, ωz)/(2π) = (1.7, 2.1, 0.54) MHz and 0.025 eV.

5.1 Room temperature testing

For room temperature testing, the trap is mounted in a UHV chamber evacuated to 7× 10−8

Pa. Ions are trapped in the largest trap region between the electrodes 2B and 2T. The

trap used for room temperature testing failed when one of the DC electrodes shorted to the

substrate after about 3 weeks of continuous use.

At room temperature large stray electric fields of the order of (10 V)/(100 µm) ∼ 105

V/m are observed, indicated by the fact that the trap voltages which compensate the trap

experimentally are up to 10 V from the predicted voltages (the trap is compensated by

minimizing the time correlation of the scattered Doppler cooling photons with the phase of
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Fig. 6. Histogram of 59 ion lifetimes measured at room temperature with the Doppler cooling

lasers on continuously. An exponential fit with a decay time of 56 ± 6 s is overlaid in red.

the RF trapping voltage [26]). Further, only up to two ions can be loaded into the trap

simultaneously. In contrast with the 111Cd+ and 25Mg+ test results, however, the stray

electric fields do not change when the ion is lost and the trap is reloaded. They drift relatively

slowly with a time constant of several hours. This is probably due to the fact that all of the

laser wavelengths used for loading and manipulation of 88Sr+ are ≥ 405 nm, which corresponds

to a photon energy of 3.06 eV, and the work function of Al is roughly 4.1 eV. In contrast,

both 111Cd+ and 25Mg+ require lasers with photon energy > 4.1 eV.

The ion lifetime was measured by loading single ions and measuring how long they remain

trapped. A histogram of 59 ion lifetimes is shown in Fig. 6. In this experiment the Doppler

cooling lasers remain on continuously. The histogram fits well to an exponential with a decay

time of 56 ± 6 s. This ion lifetime is not long enough for heating rate measurements.

Measurements of the ion lifetime without Doppler cooling can provide insight into the ion

loss mechanism. The dark lifetime is measured by loading a single ion, turning off the Doppler

cooling lasers for a controlled amount of time, and turning the Doppler cooling lasers back

on and observing whether the ion is still trapped. This is repeated many times for each dark

time to determine the probability of keeping an ion as a function of the length of time that

the Doppler cooling lasers are off, shown in Fig. 7. This should fit to an exponential if the ion

lifetime is limited by background gas collisions or to a step function if the lifetime is limited

by ion heating. The data has both exponential and step function components, indicating that

both background gas and ion heating may play a role in the anomalously short ion lifetime.

Much longer ion lifetimes have been observed in other surface-electrode ion traps at similar

vacuum pressures, so the background gas contribution to the short ion lifetime is not due to

the base pressure of the vacuum system. One possible culprit for the low room temperature

ion lifetimes is that the ion lifetime is primarily limited by local outgassing of the SiO2 layer

(see Sec. 2).



912 Demonstration of a scalable, multiplexed ion trap for quantum information processing

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Laser off time [s]

P
ro

ba
bi

lit
y 

of
 k

ee
pi

ng
 io

n

Fig. 7. Probability of keeping an ion as a function of the length of time that the Doppler cooling
lasers are turned off, measured at room temperature. This should fit to an exponential if the ion

lifetime is limited by background gas collisions or to a step function if the lifetime is limited by
ion heating. The data has both exponential and step function components, indicating that both
background gas and ion heating may play a role in the anomalously short ion lifetime.

5.2 Cryogenic testing

Recent experiments have shown that cooling ion traps to cryogenic temperatures can improve

the heating rate by several orders of magnitude [18, 27, 28]. Cooling can also improve the ion

lifetime if it is limited by background gas pressure due to local outgassing of the trap itself.

For cryogenic testing, a second trap was mounted to the 4 K baseplate of a liquid helium

bath cryostat [29]. The cryostat consists of a room temperature vacuum shield, a 77 K thermal

shield anchored to a liquid nitrogen dewar, and a 4 K liquid helium dewar. Fig. 8 shows the

baseplate of the liquid helium dewar. Optical access is provided by three windows in the

plane of the helium baseplate spaced by 90 degrees and one window oriented orthogonal to

the helium baseplate. The cryostat is pumped by a turbopump and by two activated charcoal

getters anchored to the 77 K shield and the 4 K baseplate. While it is difficult to measure

the vacuum pressure in the cryostat directly, the partial pressure of oxygen is upper bounded

by the ion lifetime measured in other traps to be ≤ 3 × 10−10 Pa.

Since the CPGA chip carrier is a poor thermal conductor, one end of a copper braid is

indium soldered to the silicon substrate of the trap and the other end is mechanically clamped

to the 4 K baseplate of the cryostat. The copper braid provides a strong thermal contact. The

trap is dominantly heated by the power dissipated in the RF electrodes. The temperature of

the RF electrodes is estimated to be of the order of a few tens of K while the temperature

of the silicon substrate and DC electrodes is measured in other traps with similar RF drive

parameters and capacitance to be 6 K.

Ions are trapped in the largest trap region between the electrodes 3B and 3T. Stray

electric fields of the order of (0.1 V)/(100 µm) ∼ 103 V/m are observed, and up to 10 ions

can be loaded into the trap simultaneously. The cryogenic testing trap failed when some

of the electrodes delaminated from the insulators after temperature cycling between room

temperature and 6 K five times and cleaning in water and isopropanol.
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Fig. 8. Setup for cryogenic testing. On the left is a picture of the 4 K baseplate of the cryostat
with the trap mounted in the center. Also visible are the electronic filter networks used to reduce

the voltage noise on the DC electrodes (thermally anchored to the 4 K baseplate), the helical
resonator used to generate the RF trap drive (thermally anchored to the 77 K shield), and one of
the activated charcoal getters used to pump the vacuum chamber (thermally anchored to the 4 K
baseplate). Not pictured are the Sr oven used to load the trap (which is mounted to the front of

the helical resonator) and the aspheric lens used to image the ions (which is mounted above the
trap inside the vacuum chamber). On the right is a picture of the trap. The copper braid in the
top right corner is used to provide a good thermal contact between the trap and the 4 K cryostat

baseplate. The RF lead is not routed through the CPGA to reduce capacitance.
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20 µm

Fig. 9. An image of three trapped 88Sr+ ions. The ion lifetime at 6 K is measured to be 4.5± 1.1
hours using these ions.

The ion lifetime at 6 K was measured using the three ions shown in Fig. 9 to be 4.5± 1.1

hours. This ion lifetime is improved by two orders of magnitude over the lifetime at room

temperature and is long enough for both heating rate measurements and QIP.

The heating rate is measured by sideband cooling to the ground state of the axial motional

mode; waiting 0, 2, or 4 ms; and measuring the relative sizes of the red and blue motional

sidebands to determine the expectation value of the number of motional quanta as a function

of time. Fig. 10 shows the red and blue motional sidebands after sideband cooling and after

a 2 ms wait. The average number of quanta in the axial motional mode as a function of wait

time after sideband cooling is shown in Fig. 11, along with a linear fit which determines the

heating rate in quanta per second.

The observed heating rate, shown in Fig. 12, is a strong function of the RF amplitude. This

is unexpected because the RF amplitude does not affect the frequency of the axial motional

mode. This is probably due to thermalization of the axial motional mode with the radial

modes. The radial modes are not sideband cooled and the y′ radial mode is only weakly

Doppler cooled due to the small projection of the Doppler cooling lasers k-vectors on the y′

principal axis. As the RF amplitude is turned up, the radial modes move further away from

the axial mode in frequency and the coupling between the radial and axial modes is reduced.

The intrinsic heating rate of the trap is upper bounded by the heating rate measured at the

highest RF amplitude: 220 ± 30 quanta/s.

6 Conclusion

Table 3 summarizes the trap testing. At room temperature, the traps displayed several

problems. The ion lifetimes measured by all three groups were shorter than expected for

the vacuum pressures that were achieved (ion lifetimes between 1 and 5 minutes at vacuum

pressures as low as 6.7×10−9 Pa). This is speculated to be due to local outgassing from

the trap itself, perhaps in particular the 10 µm SiO2 layer. The differences between the ion

lifetimes observed by the different groups may be due to some combination of the different
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Fig. 11. The average number of motional quanta in the axial mode as a function of wait time
between sideband cooling and temperature measurement. The slope of the linear fit (blue line)

gives the heating rate.
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Group Michigan NIST MIT
Ion species 111Cd+ 25Mg+ 88Sr+

Photoionization 229 nm (pulsed) 285 nm 460 and 405 nm
wavelength(s)
Micromotion scatter maximization RF sidebands, photon correlation photon correlation
compensation method
Trap MI I NIST I NIST II MIT I MIT II
Testing temperature 300 K 300 K 300 K 300 K 6 K
RF electrode spacing 150 µm 150 µm 125 µm 150 µm 150 µm
Ion height 79 µm 79 µm 60 µm 79 µm 79 µm
RF trap drive 370 V at 32 MHz 140 V at 52 MHz 130 V at 51 MHz 155 V at 40.6 MHz 155 V at 40.6 MHz
Secular frequencies 5.7, 5.9, 0.5 MHz 5.0, 5.4, 1.0 MHz 7.3, 7.7, 1.6 MHz 1.7, 2.1, 0.54 MHz 1.7, 2.1, 0.54 MHz
Principal axis rotation 12 deg 11 deg 15 deg 14 deg 14 deg
Trap depth [meV] 500 50 64 25 25
Ground plane present? no no no no no
Loading slot present? no yes yes no no
Attachment method epoxy ceramic paste solder solder solder
Q ∼ 100 ∼ 90 ∼ 90 ∼ 100 ∼ 100
Vacuum pressure 2.0 × 10−8 Pa 2.0 × 10−8 Pa 6.7 × 10−9 Pa 7 × 10−8 Pa ≤ 3 × 10−10 Pa
Ion lifetime 90 s 30 – 120 s 300 ± 30 s 56 ± 6 s 4.5 ± 1.1 hours
Heating rate — — 7000 ± 3000 s−1 — 220 ± 30 s−1

Spectral noise density — — (8 ± 3) × 10−11 — (10 ± 1) × 10−13

at 1 MHz [V2/m2/Hz]
Trap failure mode electrical shorts electrical shorts did not fail electrical shorts electrode

between DC between DC between DC delamination
and ground and ground and ground from the substrate

Table 3. Summary of the trap testing results from all three groups for each of the traps that were
successfully used to trap ions at either room temperature or 6 K.
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Fig. 12. Heating rate of the axial motional mode as a function of the amplitude of the RF trap
drive. The heating rate is smaller at higher RF amplitudes. This suggests that part of the ion
heating measured here is due to coupling of the initially cool axial mode to the relatively hot radial

modes. The radial modes move further away in frequency at higher RF amplitude, which reduces
the coupling. The intrinsic heating rate of the trap at cryogenic temperatures is thus ≤ 220 ± 30
quanta/s.

trap depths, vacuum bakeout procedures, ion masses, and ion reactivities. Some of the traps

developed shorts between electrodes either during vacuum bakeout or after trapping ions for

a few weeks. The most likely cause of the electrode shorting problem is the thin silicon

nitride insulating layer between the electrodes and the ground plane or Si substrate. This

layer is especially stressed beneath the wire bonding pads. Shorts due to cracks in the brittle

nitride underneath the wire bonding pads or elsewhere in the trap may result in shorts with

applied voltages over time. This problem can probably be corrected by using SiO2 instead

of the nitride layer since SiO2 is a more robust insulator. The nitride was used for these

initial traps because of its relatively high dielectric constant; however, mechanical instability

and electrical shorting may outweigh this advantage. Furthermore, there were also some

unidentified reliability issues which prevented some of the traps from working even when the

electrodes were not shorted. Despite these problems, however, the ion heating rate at room

temperature was relatively low for a trap of this size: 7 ± 3 quanta/ms measured with 25Mg+

at a trap frequency of 1.6 MHz and the ion 60 µm above the trap surface. This corresponds

to a spectral density of electric field noise of (8 ± 3) × 10−11 V2/m2/Hz at a frequency of 1

MHz (assuming that the spectral density of electric field noise scales like 1/f as observed in

other experiments [18, 27, 28]).

While this trap is unsuitable for QIP at room temperature due to the anomalously short

ion lifetime, its behavior is much improved at 6 K. The stray electric fields are reduced and

the ion lifetime is increased by two orders of magnitude to 4.5 ± 1.1 hours. The ion heating

rate with 88Sr+ is ≤ 220 ± 30 quanta/s at a trap frequency of 540 kHz and an ion height

of 79 µm. This corresponds to a spectral density of electric field noise of (10 ± 1) × 10−13

V2/m2/Hz at a frequency of 1 MHz, which is suppressed by two orders of magnitude below

the room temperature measurement with 25Mg+ and is only about an order of magnitude
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higher than the lowest heating rate observed in a trap of this size [28]. This heating rate is

low enough for fault-tolerant QIP operations [30].

Further development is necessary before this trap is ready for large-scale QIP. The elec-

trode shorting and trapping reliability issues must be addressed. If the trap is to be used at

room temperature, then the ion lifetime must also be improved. The ion heating rates ob-

served both at room temperature and especially at 6 K, however, are already low enough for

high fidelity QIP operations. Future work will address electrode shorting and trapping relia-

bility, move towards more complicated trap layouts with intersections, and pursue integration

of these traps with control electronics and optics.
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